Hauptinhalt
Topinformationen
Publications
2024
21. 100 μs Luminescence Lifetime Boosts the Excited State Reactivity of a Ruthenium(II)-Anthracene Complex in Photon Upconversion and Photocatalytic Polymerizations with Red Light
H. Hammecke, D. Fritzler, N. Vashistha, P. Jin, B. Dietzek-Ivanšić, C. Wang*, Chem. Eur. J. 2024, e202402679.
doi.org/10.1002/chem.202402679
20. Ferromagnetically Coupled Chromium(III) Dimer Shows Lumineszence and Sensitizes Photon Upconversion
S. Trippmacher, S. Demeshko, A. Prescimone, F. Meyer, O. S. Wenger*, C. Wang*, Chem. Eur. J. 2024, 30, e202400856.
doi.org/10.1002/chem.202400856
19. Cage escape governs photoredox reaction rates and quantum yields
C. Wang, H. Li, T. B. Bürgin, O. S. Wenger.* Nat. Chem. 2024, 16, 1151 - 1159.
doi.org/10.1038/s41557-024-01482-4
2023
18. First-Row d6 Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light
C. Wang, C. Wegeberg, O. S. Wenger.* Angew. Chem. Int. Ed. 2023, 62, e202311470.
doi.org/10.1002/anie.202311470
17. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions
H. Li, C. Wang, F. Glaser, N. Sinha, O. S. Wenger.* J. Am. C. Soc. 2023, 145, 11402-11414.
doi.org/10.1021/jacs.3c02609
16. Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby
C. Wang,+ K. Ebel,+ K. Heinze, U. Resch-Genger,* I. Bald.*
Chem. Eur. J. 2023, 29, e202203719.
doi.org/10.1002/chem.202203719
(+: equal contribution)
15. An Air- and Moisture-stable Zinc(II) Carbene Dithiolate Dimer Showing Fast Thermally Activated Delayed Fluorescence and Dexter Energy Transfer Catalysis
O. Mrózek, M. Mitra, B. Hupp, A. Belyaev, N. Lüdtke, D. Wagner, C. Wang, O. S. Wenger, C. M. Marian,* A. Steffen.*
Chem. Eur. J. 2023, 29, e202203980.
doi.org/10.1002/chem.202203980
2022
14. Bulky ligands protect molecular ruby from oxygen quenching
L. Stein, C. Wang, C. Förster, U. Resch-Genger, K. Heinze.*
Dalton Trans., 2022, 51, 17664.
doi: 10.1039/D2DT02950B
13. Efficient Triplet-Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism
C. Wang, F. Reichenauer, W. R. Kitzmann, C. Kerzig,* K. Heinze,* U. Resch-Genger.*
Angew. Chem. Int. Ed. 2022, 61, e2022202238.
doi.org/10.1002/anie.202202238
12. Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby
C. Wang,+ W. R. Kitzmann,+ F. Weigert, C. Förster, X. Wang, K. Heinze,* U. Resch-Genger.*
ChemPhotoChem 2022, 6, e202100296.
doi.org/10.1002/cptc.202100296
(+: equal contribution)
2017-2021
11. Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ surpasses [Ru(bpy)3]2+
F. Reichenauer, C. Wang, C. Förster, P. Boden, N. Ugur, R. Báez-Cruz, J. Kalmbach, L. M. Carrella, E. Rentschler, C. Ramanan, G. Niedner-Schatteburg, M. Gerhards, M. Seitz, U. Resch-Genger, K. Heinze.*
J. Am. Chem. Soc. 2021, 143, 30, 11843–11855.
doi.org/10.1021/jacs.1c05971
10. Ligand-controlled aggregation and nanoconfinement-boosted phosphorescence from Pt(II) and Pd(II) complexes: Towards color tunable reporters and self-referenced oxygen sensors
I. Maisuls†, C. Wang†, M. E. Gutierrez Suburu, S. Wilde, C.-G. Daniliuc, D. Brünink, N. L. Doltsinis, S. Ostendorp, G. Wilde, J. Kösters, U. Resch-Genger,* C. A. Strassert.*
Chem. Sci. 2021, 12, 3270-3281.
doi: 10.1039/D0SC06126C
(†: equal contribution)
9. Near-IR to Near-IR Upconversion Luminescence in Molecular Chromium Ytterbium Salts
J. Kalmbach,# C. Wang,# Y. You, C. Förster, H. Schubert, K. Heinze,* U. Resch-Genger,* M. Seitz.*
Angew. Chem. Int. Ed. 2020, 59, 18804-18808; Angew. Chem. 2020, 132, 18966 – 18970.
doi.org/10.1002/anie.202007200
(#: equal contribution)
8. Green‐Light Activation of Push–Pull Ruthenium(II) Complexes
J. Moll, C. Wang, A. Päpcke, C. Förster, U. Resch‐Genger, S. Lochbrunner, K. Heinze.*
Chem. Eur. J. 2020, 26, 6820-6832.
doi.org/10.1002/chem.202000871
• “Cover Feature” of Chem. Eur. J. 2020
7. Triplet-Triplet Annihilation Upconversion in a Crystalline MOF with Acceptor-filled Pores
S. Gharaati‡, C. Wang‡, C. Förster, U. Resch-Genger,* K. Heinze.*
Chem. Eur. J. 2020, 26, 1003 –1007.
doi.org/10.1002/chem.201904945
(‡: equal contribution)
• “Cover Feature” of Chem. Eur. J. 2020, 26/5
6. Luminescence and Light-driven Energy and Electron Transfer from an Exceptionally Long-lived Excited State of a Non-innocent Chromium(III) Complex
S. Treiling, C. Wang, C. Förster, F. Reichenauer, J. Kalmbach, P. Boden, J. P. Harris, L. Carrella, E. Rentschler, U. Resch-Genger, C. Reber, M. Seitz, M. Gerhards, K. Heinze.*
Angew. Chem. Int. Ed. 2019, 58,18075 –18085; Angew. Chem. 2019, 131, 18243 – 18253.
doi.org/10.1002/anie.201909325
• “Cover Feature” of Angew. Chem. Int. Ed. 2019, 58/50
5. A π-conjugated, Covalent Phosphinine Framework
J. Huang, J. Tarábek, R. Kulkarni, C. Wang, M. Dračínský, G. J. Smales, Y. Tian, S. Ren, B. R. Pauw, U. Resch-Genger, M. J. Bojdys.*
Chem. Eur. J. 2019, 25, 12342–12348.
doi.org/10.1002/chem.201900281
4. Luminescent TOP Nanosensors for Simultaneously Measuring Temperature, Oxygen, and pH at a Single Excitation Wavelength
C. Wang, S. Otto, M. Dorn, K. Heinze,* U. Resch-Genger.*
Anal. Chem. 2019, 91, 2337–2344.
doi.org/10.1021/acs.analchem.8b05060
3. A strongly luminescent chromium(III) complex acid
S. Otto, C. Förster, C. Wang, U. Resch-Genger,* K. Heinze.*
Chem. Eur. J. 2018, 24, 12555-12563.
doi.org/10.1002/chem.201802797
2. Deuterated Molecular Ruby with Record Luminescence Quantum Yield
C. Wang, S. Otto, M. Dorn, E. Kreidt, J. Lebon, L. Sršan, P. Di Martino-Fumo, M. Gerhards, U. Resch-Genger*, M. Seitz*, K. Heinze.*
Angew. Chem. Int. Ed. 2018, 57, 1112 –1116. Angew. Chem. 2018, 130, 1125–1130.
doi.org/10.1002/anie.201711350
1. Three-in-One Crystal: The Coordination Diversity of Zinc Polypyridine Complexes
S. Otto, J. Moll, C. Förster, D. Geißler, C. Wang, U. Resch-Genger*, K. Heinze.*
Eur. J. Inorg. Chem. 2017, 5033-5040.
doi.org/10.1002/ejic.201700948